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Described during the late 1980s and 1990s, cannabinoid receptors (CB1R and CB2R) are G-protein-

coupled receptors (GPCRs) activated by endogenous ligands and cannabinoid drug compounds, such as

D9-THC. Whereas CB1R has a role in the regulation of neurotransmission in different brain regions and

mainly mediates the psychoactive effects of cannabinoids, CB2R is found predominantly in the cells and

tissues of the immune system and mediates anti-inflammatory and immunomodulatory processes.

Studies have demonstrated that CB1R and CB2R can affect the activation of T cells, B cells, monocytes,

and microglial cells, inhibiting proinflammatory cytokine expression and upregulating proresolution

mediators. Thus, in this review, we summarize the mechanisms by which CBRs interact with the

autoimmune environment and the potential to suppress the development and activation of autoreactive

cells. Finally, we highlight how the modulation of CB1R and CB2R is advantageous in the treatment of

autoimmune diseases, including multiple sclerosis (MS), type 1 diabetes mellitus (T1DM) and

rheumatoid arthritis (RA).
Introduction
Mammalian tissues contain an endogenous cannabinoid system

(the endocannabinoid system, ECS), comprising: (i) GPCRs CB1R

and CB2R; (ii) endogenous cannabinoid ligands; and (iii) enzymes

involved in their synthesis and inactivation (endocannabinoid

metabolism) [1]. Additionally, other receptors have been reported

to be activated by cannabinoid drugs and related molecules,

including GPCR 55 (GPR55), GPR18, and GPR119 [2–4]. GPR55

has gained attention as a potential receptor for cannabinoid

ligands that mediates effects independently of CB1R and CB2R,

suggesting a third CBR (i.e., CB3R). However, according to Pertwee

and co-authors, CB3R does not meet the criteria that would classify

it as a cannabinoid receptor [4]. According to the current classifi-

cation by the International Union of Basic and Clinical Pharma-

cology (IUPHAR), endocannabinoids are those compounds with

significant affinity for CB1R or CB2R [5]. However, their molecular
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targets go far beyond classical CBR and include a range of recep-

tors, such as GPR55, GPR18, GPR119, transient receptor potential

ankyrin 1 (TRPA1), transient receptor potential channel type V1

(TRPV1), and peroxisome proliferator-activated receptors (PPARs),

as well as several nonreceptor targets, which makes them active in

different processes, such as inflammation and autoimmunity [4,6].

The ECS acts as a regulator of immune homeostasis, in cortical

development [7], the sleep–wake cycle, memory, and emotional

responses [8]. Moreover, it exerts regulatory effects on neuroendo-

crine function, including the regulation of the stress response, food

intake, fluid homeostasis, and reproductive function [9]. Thus, the

dysregulation of ECS signaling can leads to immune-mediated psy-

chiatric disorders [10], obesity, insulin resistance, and dyslipidemia

[11]. The ECS also has an important role in neuroprotection and

central nervous system (CNS) homeostasis. Previous studies sug-

gested that the ECS participates in immune control in the CNS [12],

maintaining the overall ‘fine-tuning’ of immune homeostatic

balance [13] and influencing neuroendocrine responses to
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inflammation and infection [14]. Thus, pharmacological modula-

tion of CBR and/or the enzymes that control its synthesis, transport,

and degradation is an option for the treatment of numerous neuro-

logical disorders [15], reinforcing the role of the ECS in neuroin-

flammatory conditions [16].

After synthesis, the ECS acts locally by regulating multiple

presynaptic neurotransmitters. In this context, it is synthesized

and released from postsynaptic cells and travels backward in the

‘retrograde’ direction across the synapse, maintaining homeostasis

and preventing excessive neuronal activity [10]. N-arachidonoy-

lethanolamine, also called anandamide (AEA), and 2-arachidonoyl

glycerol (2-AG) are both lipid molecules, but are not stored in

vesicles similar to other neurotransmitters [17]. Instead, they are

synthesized and released on demand, a process that can be regu-

lated either physiologically or under pathological conditions

(Fig. 1). The two-step process that includes transport into cells

and hydrolysis by specific enzymatic systems degrades the ECS.

The biological activities of anandamide at CBR are halted by their

removal from the extracellular space through cellular uptake by a

transporter. However, the molecular identity of the AEA and 2-AG

transporters remains elusive [18–20]. Once taken up by cells, AEA

is the substrate for fatty acid amide hydrolase (FAAH), which

breaks the amide bond and releases arachidonic acid and ethanol-

amine. 2-AG is subjected to rapid transport across the plasma

membrane and is degraded by FAAH or, more efficiently, by

specific monoacylglycerol lipase (MAGL) (Fig. 1) [10].

The CB1R was initially considered a CNS receptor, although it

occurs at central and peripheral nerve terminals in both excitatory

and inhibitory neurons (Fig. 2) [21]. The expression of CB1R in

skeletal muscle, liver, and pancreatic islets has also been described,

as well as its role in metabolism [22]. CB1R demonstrates neuro-

protective roles [23] in disorders such as chronic intermittent

hypoxia [24], neurodegenerative diseases [25], and neuronal dam-

age caused by HIV-1 infection [26]. These neuroprotective effects

are mediated by the downregulation of PGE2, PGD2, and reactive

oxygen species (ROS), through the reduction of COX-1- and COX-

2 activity in microglial cells [27], although many other mecha-

nisms and targets are known. Intriguingly, the anti-inflammatory

properties of CB1R extend to skin diseases and wound healing.

CB1R is capable of limiting the secretion of proinflammatory

chemokines in cells such as keratinocytes, suggesting that CB1R

also regulates T cell-dependent inflammatory diseases of the skin

[28]. Furthermore, CB1R agonists could be good options for the

treatment of psoriasis, vitiligo, and atopic dermatitis because they

downregulate mast cell activation and relieve inflammatory symp-

toms mediated by hypersensitivity and autoimmune diseases [29],

although their use is minimal because of their psychotropic prop-

erties (Fig. 3). Peripherally selective CB1R agonists, such as indole

and indene compounds with limited CNS penetration, have

emerged to solve this limitation and represent a possible pharma-

cological intervention to explore the beneficial effects of CB1R

without undesirable consequences [30].

Recent reports suggested that endocannabinoid levels at in-

flammatory sites can be rapidly elevated and in turn regulate fast

signaling responses in immune and other cells, modulating their

crucial functions. Thus, previous reports investigated CB2R for

the treatment of chronic neuroinflammatory disorders [31],

traumatic brain injury (TBI) [32], ischemic injury, spinal cord
1846 www.drugdiscoverytoday.com
injury [33], and Parkinson’s disease (PD) [34] (Fig. 3). Extending

from these observations, Castaneda et al. showed that CB2R

expression in human leukocytes is regulated by cellular location

(extracellular or intracellular), cell lineage, and activation state,

suggesting that CB2R location activates different signaling path-

ways [35]. Surprisingly, CB2R is distributed in the CNS, and its

expression has been identified in areas including the prefrontal

cortex [36], globus pallidus [37], substantia nigra [36], brain stem

[38], and cerebellum [39], justifying its possible neuroprotective

role [40]. Additionally, CB2R demonstrates analgesic effects in

cancer, MS, fibromyalgia, painful diabetic neuropathy, migraine,

and both acute and persistent inflammatory pain [41] through

the downregulation of cytokines such as interleukin (IL)-1b, IL-6,

IL-18, tumor necrosis factor (TNF), and monocyte chemoattrac-

tant protein 1 (MCP-1). Moreover, CB2R activation inhibits as-

trocyte and glial cell activation, leading to the control of chronic

pain by modulating neuronal activity and inhibiting pain trans-

mission [42] (Fig. 3). Additionally, early studies demonstrated

that cannabinoids and their receptors constitute a novel, inno-

vative, and clinically relevant control element of keratin upre-

gulation and keratinocyte proliferation [43]. In the same way,

AEA suppresses human epidermal keratinocyte proliferation and

induces cell death, demonstrating that cutaneous ECS activation

could become a therapeutic strategy for hyperproliferative hu-

man skin lesions, such as psoriasis [44]. More recently, Norooz-

nezhad and colleagues showed that the cannabinoid JWH-133

inhibited psoriatic pathogenesis (angiogenesis and inflamma-

tion) [44]. In this context, both receptors have been studied

for their relevance in autoimmune conditions, such as MS,

T1DM, RA, and others (Fig. 4). Herein, we discuss how CBR

and cannabinoid ligands could modulate the genesis, onset,

and progression of autoimmunity.

Therapeutic strategies targeting the CBR pathway in
multiple sclerosis
Autoimmune diseases, including MS, result from aberrant activa-

tion of the immune system, whereby the immune response is

directed against harmless self-antigens. This results in inflamma-

tion, tissue damage, and loss of tissue function [45]. Evidence

supports the use of cannabis and its active ingredients as immu-

nomodulatory agents by affecting T cell, B cell, monocyte, and

microglial activation, inhibiting proinflammatory cytokine ex-

pression, and upregulating proresolution mediators [46]. MS is a

chronic, degenerative, autoimmune disease of the CNS that affects

~2.5 million people worldwide [47]. It is considered the most

common nontraumatic disability in the world, with a high preva-

lence in young people, with associated personal and socioeconom-

ic burdens [48]. According to Dendrou and Fugger, MS is an

inflammatory disease, characterized by the infiltration of immune

cells into the CNS. This discovery lead to research into the etiology

of autoimmune disease, as well as guided treatments with immu-

nomodulatory agents [49]. Commonly, demyelinated plaques are

present in white and gray matter, such as the cerebral or cerebellar

cortex and brainstem nuclei. The pathophysiological processes

involve the formation of plaques, neuroinflammation, myelin

breakdown, astrogliosis, oligodendrocyte injury, neurodegenera-

tion, axonal loss, and remyelination. The presence of immune

mediators, such as complement proteins, and autoreactive cells,
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FIGURE 1

Biosynthesis and degradation of endocannabinoids (ECS). Pathways involved in the synthesis and degradation of two main endocannabinoids: arachidonoyl
ethanolamine (anandamide; AEA) and 2-arachidonoyl glycerol (2-AG). AEA is synthesized from N-arachidonoyl phosphatidylethanolamine (NArPE), which is
derived from the enzymatic transfer, catalyzed by N-acyltransferase (NAT), of an acyl group from the sn-1 position of arachidonoyl phosphatidylcholine (diArPC)
to the amino group of a phosphatidylethanolamine (PE). In turn, NArPE is hydrolyzed to AEA and phosphatidic acid by a specific phospholipase D (NAPE-PLD)
and degraded by fatty acid amide hydrolase (FAAH), producing ethanolamide and arachidonic acid. Synthesis of 2-AG depends on conversion of
phosphatidylinositol (PI) to diacylglycerol by phospholipase C (PLC) and their subsequent transformation to 2-AG by the action of diacylglycerol lipase (DAGL). 2-
AG is inactivated by the activity of monoacylglycerol lipase (MAGL) at glycerol and arachidonic acid. Finally, 2-AG and AEA might be taken back into the cell by a
transporter mechanism that is currently poorly defined. Here, we illustrate the possible role of AEA membrane transporter (AMT) in the removal of AEA from the
extracellular space. Figure created using the Mind the Graph platform.
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including B cells, T cells, and macrophages, drives autoimmune-

mediated inflammatory diseases, such as MS [47]. Moreover, there

is evidence demonstrating that hypofunction or dysregulation of

the ECS might be responsible for the onset or progression of MS

symptomatology, and that modulation of the cannabinoid system

could provide potential therapeutics for inflammatory and auto-

immune diseases such as MS [50–52].

Recently, Brindisi et al. demonstrated that compound 4a, a potent

b-lactam-based monoacylglycerol lipase inhibitor (MAGL), upregu-

lated 2-AG and acted as an indirect cannabinoid (CB1R/CB2R)

receptor agonist. Interestingly, administration of compound 4a

during experimental autoimmune encephalomyelitis (EAE), an

MS model, improved the severity of clinical symptoms in a CB1/

CB2-dependent manner [53]. Another study demonstrated that

mice with lower levels of FAAH showed severity of symptoms

similarly to wild-type mice, with important clinical remission

[54]. MAGL blockade is a useful strategy for the treatment of white

matter lesions via the inhibition of oligodendrocyte death, prevent-
ing demyelination and reducing EAE severity in mice [55]. More-

over, WWL70, a potent inhibitor of a/b-hydrolase domain 6

(ABHD6), modulates CB2R by inducing a neuroprotective effect,

and upregulates 2-AG in microglia and macrophages. In addition,

WWL70 inhibited EAE-induced symptoms and reduced iNOS, COX-

2, TNF, and IL-1b expression, as well as nuclear factor (NF)-kB
phosphorylation in the CNS [56]. Another cannabinoid compound,

UCM707, a potent and selective inhibitor of endocannabinoid

uptake, reduced microglial activation, proinflammatory mediator

levels, majorhistocompatibilitycomplex class II antigenexpression,

and cellular infiltrates in the spinal cord of mice with Theiler’s

murine encephalomyelitis virus-induced demyelinating disease

(TMEV-IDD), a typical murine model of MS [57]. Moreover, CB2R

activation is a prospective alternative to treat neuroinflammatory

responses in neurological disorders such as MS, cerebral ischemia,

Alzheimer’s disease (AD), and PD, given that CB2R ligands do not

inducethe adverse psychotropic effects related to CB1R activation in

the brain, which are mediated by microglia and neurons [58].
www.drugdiscoverytoday.com 1847
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FIGURE 2

Neuromodulatory activity of cannabinoid type 1 receptor (CB1R). The action potential stimulates glutamate (Glu) release. After release into extracellular space,
Glu binds to glutamate receptors such as AMPAR and mGLUR expressed in membranes of both postsynaptic and presynaptic neurons. Endocannabinoids (ECSs)
are mobilized from postsynaptic neurons and target presynaptic CB1R to suppress neurotransmitter release. After synthesis, ECSs regulate multiple presynaptic
neurotransmitters and travel backward (in the ‘retrograde’ direction) across the synapse, maintaining homeostasis and preventing excessive neuronal activity.
ECSs are synthesized and released ‘on demand’, and this can be regulated either physiologically or under pathological conditions. Biological activities of
arachidonoyl ethanolamine (anandamide; AEA) at CBRs are stopped by their removal from the extracellular space through cellular uptake by a transporter. Once
taken up by cells, AEA is a substrate for fatty acid amide hydrolase (FAAH), which breaks the amide bond and releases arachidonic acid (AA) and ethanolamine. By
contrast, 2-arachidonoyglicerol (2-AG) is subjected to rapid transport across the plasma membrane and is degraded by FAAH or, more efficiently, by a specific
monoacylglycerol lipase (MAGL). CB1R commonly is coupled to Gi/o and inhibits presynaptic Ca2+ influx through voltage-gated Ca2+ channels (VGCCs), the
activity of adenylyl cyclase (AC), the formation of cAMP, and activity of protein kinase A (PKA), as well as activating ERK1/2, inhibiting neurotransmitter release.
Abbreviations: COX, cyclooxygenase; DAGL diacylglycerol lipase; NArPE, N-arachidonoyl phosphatidylethanolamine; PLD, phospholipase D. Figure created using
the Mind the Graph platform.
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In terms of the relevance of the CBR pathway in MS, Annunziata

et al. recently reported that COR167, a selective CB2 agonist, led to

an atypical and incomplete shift in the Th1 phenotype towards a

Th2 phenotype, associated with a slight reduction in IL-4 and IL-5

levels, as well as markedly reduced Th17-related cytokine levels

[59]. CB2R knockout mice showed exacerbated clinical EAE scores

compared with wild-type mice. Interestingly, these animals also

showed extended axonal loss, T lymphocyte (CD4+) infiltration,

and microglial (CD11b+) activation, whereas CB2-deficient T cells

exhibited reduced levels of apoptosis, a higher rate of proliferation.

and increased production of inflammatory cytokines. These find-

ings indicate that CB2R expression by encephalitogenic T cells is
1848 www.drugdiscoverytoday.com
crucial for the control of neuroinflammation associated with EAE

[60]. Lago et al. showed that CB1R mediated anti-inflammatory

effects in the EAE model through the downregulation of COX-2,

iNOS, and TNF expression in the spinal cord and brainstem [61].

Moreover, administration of Rimonabant1 (20 mg), a CB1R in-

verse agonist, increased motor system excitability in the cortex

and spinal cord, revealing its role as a potential therapeutic agent

in neuroinflammatory and motor neuron diseases, including MS,

PD, and traumatic brain injury [62].

Interestingly, a clinical report demonstrated a positive impact of a

D9-tetrahydrocannabinol (D9-THC) and cannabidiol (CBD)

Sativex1 oromucosal spray, a mix of 2.7 mg D9-THC and 2.5 mg
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FIGURE 3

Giant's fight. This figure illustrates the main differences and physiology mechanism between cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2
(CB2) and highlights the strengths and weaknesses. Abbreviation: CNS, central nervous system. Figure created using the Mind the Graph platform.
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CBD extracted from Cannabis sativa, in patients with MS [63]. It was

an effective and well-tolerated treatment for patients with treat-

ment-resistant MS spasticity [64,65]. Furthermore, Patti and co-

authors demonstrated that Sativex1 treatment inhibited spasticity

(70.5% reduction) in 1615 patients with MS, although 39.5% of

patients discontinued treatment for lack of effectiveness (26.2%)

and/or adverse events (18.7%) [66]. Other groups demonstrated that

the D9-THC/CBD Sativex1 oromucosal spray improved spasticity-

related symptoms independently of the number of prior failed

therapy attempts; in addition, tolerability was not influenced by

pretreatment history [67]. Additionally, Sativex1 oromucosal spray

improved neuropathic pain, sleeping, walking, and treatment-re-

fractory symptoms [68]. According to Gras and Broughton, Sativex1

oromucosal spray is cost-effective for the treatment of spasticity in

MS [69]. Additionally, Carotenuto et al. showed corticospinal tract

(CST) damage in patients with MS with spasticity symptoms, but

they could not show correlations that could explain the clinical

effects of Sativex1 [70]. Another study demonstrated that patients

with MS treated with IFN-b1b associated with Sativex1 showed

specific downregulation of CB2R expression, suggesting that IFN-

b contributes to the difference in CBR expression in leukocytes

during Sativex1 treatment [71]. Finally, D9-THC and CBD have
immunosuppressive activity [72]. THC/CBD has low abuse potential

and few psychoactive effects, and the approval of Sativex1 for the

management of MS spasticityhasopened new opportunities formany

patients [73]. These relevant clinical trials are reviewed in details

elsewhere [74]. Altogether, these data reinforce the hypothesis that

pharmacological manipulation of the ECS represents a potential

target for the treatment of autoimmune diseases, such as MS.

The impact of cannabinoid receptor signaling in type 1
diabetes mellitus
T1DM is a chronic autoimmune disease that leads to the destruc-

tion of insulin-producing pancreatic b cells, the glucose thermo-

stats of the body, such that they are not able to produce sufficient

amounts of insulin, resulting in hyperglycemia, clinical symp-

toms, and damage to organs and tissues. Classical symptoms

include hyperglycemia, polyuria, polydipsia, weight loss, abdom-

inal symptoms, headaches, and ketoacidosis, as well as visual

impairment, nephropathy, neuropathy, heart disease, and stroke.

An unfortunate combination of genetic and environmental fac-

tors contributes to the differentiation and proliferation of auto-

immune cells against pancreatic b cells, leading to the

autodestruction of pancreatic b-cells and hyperglycemia
www.drugdiscoverytoday.com 1849
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FIGURE 4

Cannabinoid receptor (CBR) ligands and autoimmune diseases. This illustration summarizes the main findings from this review article regarding the interaction
between cannabinoid receptor ligands in autoimmunity, especially multiple sclerosis, type 1 diabetes mellitus, rheumatoid arthritis, and psoriasis. Figure created
using the Mind the Graph platform. Abbreviation: CNS, central nervous system.
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symptoms. The autoimmune response during T1DM involves

humoral and cellular immunity, possibly from a loss of toler-

ance to tissue self-antigens caused by deficiencies in both cen-

tral and peripheral tolerance as well as the production of

autoantibodies against pancreatic islets [75]. T1DM has no cure,

but the crucial involvement of the endocannabinoid/cannabi-

noid receptor system in DM and its complications has been

recognized [76].

CB1Rs are expressed mainly in the brain and modulate food

intake and energy balance. Moreover, the ECS modulates the

function of pancreatic b cells by influencing basal and glucose-

induced insulin secretion, as well as their proliferation and

survival. Evidence indicates that CB1R signaling contributes to

insulin resistance in both T1DM and T2DM. However, is not

entirely understood whether CB1R has a harmful or beneficial

effect during hyperglycemia. Whereas D9-THC induced glucose

tolerance in mice when chronically administered, CB1R blockade

inhibited hyperglycemia and controlled obesity in mice [77]; this

was also observed in cannabis users [78]. Finally, previous reports
1850 www.drugdiscoverytoday.com
have shown that CBD administration ameliorates T1DM symp-

toms in nonobese diabetic (NOD) mice [79].

Other evidence suggests that CB1R is upregulated in podocytes,

a highly specialized cell of the kidney glomerulus. CB1R signaling

has an essential role in nephropathy development in Zucker

diabetic fatty (ZDF) rats. Also, CB1R blockade ameliorated albu-

minuria in an experimental T1DM model [80]. By contrast, CB2R

expression is downregulated in kidney biopsies from patients in

advanced stages of diabetic nephropathy, and CB2R deletion

worsens nephropathy and reduces albuminuria in diabetic mice,

confirming a protective role of CB2R signaling during T1DM

progression [76]. Lastly, dual therapy using AM6545, a peripher-

ally restricted CB1R antagonist, or AM1241, a CB2R agonist, in

experimental diabetic nephropathy showed positive effects on

albuminuria, inflammation, tubular injury, and renal fibrosis [81].

Additionally, Bartolozzi et al. demonstrated the antinocicep-

tive effect of CB2R agonists in a streptozotocin (STZ)-induced

diabetic neuropathy model [82]. Duarte et al. showed an in-

crease in CB1R density in the hippocampus of STZ-induced
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diabetic rats, associated with diabetic encephalopathy [83]. Two

years later, Zhang et al. showed that high glucose levels decreased

CB1R expression in nerve cells, although its function was preserved

[84]. Moriarty et al. showed that STZ-diabetic rats have altered CB1R

functionality in the substantia nigra, which might be related to a

negative impact on cognitive function, associated with diabetes and

diabetic neuropathic pain [85]. Recently, Jadoon et al. published a

randomized, double-blind, placebo-controlled study using 62 sub-

jects with noninsulin-treated T2DM, and demonstrated that tetra-

hydrocannabivarin treatment (THCV, THV; 5 mg twice daily), a

homolog of THC, significantly decreased plasma glucose and in-

creasedb cell function, and adiponectin and apolipoprotein A (Apo-

A) levels, and was well tolerated in patients [86]. Altogether, these

findings suggest beneficial effects of cannabinoid ligands on T1DM,

given the relationship between the ECS and T1DM, partly because

this system modulates food intake and energy balance and regulates

pancreatic b cell function, reinforcing its involvement in diabetes

pathophysiology and diabetic complications. However, despite

these results, questions remain. For instance, what is the mechanism

by which CBR modulates metabolic disorders, including T1DM?

Does CBR mediate T1DM through the inhibition of autoreactive B

cells or are other CBR-related pathways significantly involved?

Further studies are needed to answer these and other questions.

Modulation of rheumatoid arthritis by cannabinoid
receptors
RA is human leukocyte antigen (HLA) class II-associated autoim-

mune rheumatic disease, in which arthritogenic T cells drive to

progressive inflammation and destruction of synovial joints. RA is

characterized by progressive disability, systemic disturbances, early

death, and socioeconomic costs. Furthermore, genetic, female sex,

and environmental factors contribute to disease susceptibility, de-

velopment, and progression. Although the cause of RA has yet to be

elucidated, molecular mimicry between self-proteins and microbial

pathogens has been implicated as a possible factor in the induction

or exacerbation of RA [87]. In this context, earlier evidence suggested

the participation of CBR in the pathophysiology of RA. Previously,

Bellini et al. demonstrated an association between CB2R variant

Q63R and susceptibility to oligo/polyarticular juvenile idiopathic

arthritis [88]. Others showed the potential anti-inflammatory activ-

ity of CB2R agonists during RA; for instance, ajulemic acid, a

synthetic nonpsychoactive cannabinoid acid, induced T cell apo-

ptosis and increased selectively and markedly 15d-PGJ(2), an eicos-

anoid that facilitates the resolution of inflammation during

experimental RA [89]. Moreover, Selvi et al. demonstrated that

the cannabinoid CP55,940 and WIN55,212-2 (both nonselective

cannabinoids agonists) inhibited IL-6 and IL-8 expression from IL-

1b stimulated fibroblast-like synoviocytes through a CBR-indepen-

dent pathway [90]. Another randomized, parallel group, double-

blind study compared the pharmacological effects of Sativex1,
which contains D9-THC and CBD, with placebo in 58 patients with

RA over 5 weeks of treatment. Relevantly, a significant analgesic

effect was observed, and disease activity was markedly reduced

following Sativex1 treatment [91]. These findings suggest that

CB2R is upregulated in synovial tissue and cultured fibroblast-like

synoviocytes from patients with RA.

Thus, CB2R activation might have immunomodulatory and

anti-inflammatory effects during rheumatic autoimmune disor-

ders, such as RA. In this way, the modulation of endocannabinoid

metabolism represents another target to control arthritic inflam-

mation. The N-acylethanolamines, as well as FAAH inhibitors,

exert anti-inflammatory effects in synovial fibroblasts [92]. More-

over, FAAH inhibition reduced collagen-induced arthritis hyper-

algesia in a CB1R dependent-manner and this analgesic effect was

associated with a COX-2 inhibitor [92]. These reports suggest that

CBR and the ECS offer a promising therapeutic target for the

development of innovative pharmacological approaches to the

treatment of RA and other rheumatic disorders.

Concluding remarks and future perspectives
Autoimmune diseases are related to the impairment of health-

related quality of life and depression-like symptoms [2,3]. Addi-

tionally, although currently available treatments have brought

about significant advances in medicine and significant clinical

benefits, they can have considerable adverse effects, and optimal

treatment for these conditions remains a work in progress. Given

the involvement of the ECS in the pathophysiology of autoim-

mune diseases, CBR ligands and pharmacological modulation of

the ECS have emerged as potential therapies because of their anti-

inflammatory, immunomodulatory, and analgesic properties.

Thus, CB1R and CB2R ligands, including phytocannabinoids

beyound the Cannabis species, have caught the attention of the

medical community and further preclinical and clinical studies are

needed to investigate their beneficial effects on autoimmune

diseases such as MS, T1DM, and RA, and their comorbidities.

Finally, these reports highlight recent advances in research into

therapies going beyond Sativex1 and Rimonabant1, pointing to

other exciting and prospective compounds that have opened new

therapeutic windows for the treatment of autoimmune diseases

(Fig. 4).
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